Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.

نویسندگان

  • Nuri Firat Ince
  • Sami Arica
  • Ahmed Tewfik
چکیده

We describe a new technique for the classification of motor imagery electroencephalogram (EEG) recordings in a brain computer interface (BCI) task. The technique is based on an adaptive time-frequency analysis of EEG signals computed using local discriminant bases (LDB) derived from local cosine packets (LCP). In an offline step, the EEG data obtained from the C(3)/C(4) electrode locations of the standard 10/20 system is adaptively segmented in time, over a non-dyadic grid by maximizing the probabilistic distances between expansion coefficients corresponding to left and right hand movement imagery. This is followed by a frequency domain clustering procedure in each adapted time segment to maximize the discrimination power of the resulting time-frequency features. Then, the most discriminant features from the resulting arbitrarily segmented time-frequency plane are sorted. A principal component analysis (PCA) step is applied to reduce the dimensionality of the feature space. This reduced feature set is finally fed to a linear discriminant for classification. The online step simply computes the reduced dimensionality features determined by the offline step and feeds them to the linear discriminant. We provide experimental data to show that the method can adapt to physio-anatomical differences, subject-specific and hemisphere-specific motor imagery patterns. The algorithm was applied to all nine subjects of the BCI Competition 2002. The classification performance of the proposed algorithm varied between 70% and 92.6% across subjects using just two electrodes. The average classification accuracy was 80.6%. For comparison, we also implemented an adaptive autoregressive model based classification procedure that achieved an average error rate of 76.3% on the same subjects, and higher error rates than the proposed approach on each individual subject.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction subject-specific motor imagery time-frequency patterns for single trial EEG classification

We introduce a new adaptive time-frequency plane feature extraction strategy for the segmentation and classification of electroencephalogram (EEG) corresponding to left and right hand motor imagery of a brain-computer interface task. The proposed algorithm adaptively segments the time axis by dividing the EEG data into non-uniform time segments over a dyadic tree. This is followed by grouping t...

متن کامل

Nonnegative Matrix Factorization for Motor Imagery EEG Classification

In this paper, we present a method of feature extraction for motor imagery single trial EEG classification, where we exploit nonnegative matrix factorization (NMF) to select discriminative features in the time-frequency representation of EEG. Experimental results with motor imagery EEG data in BCI competition 2003, show that the method indeed finds meaningful EEG features automatically, while s...

متن کامل

Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters.

Electroencephalogram (EEG) recordings during right and left motor imagery can be used to move a cursor to a target on a computer screen. Such an EEG-based brain-computer interface (BCI) can provide a new communication channel to replace an impaired motor function. It can be used by, e.g., patients with amyotrophic lateral sclerosis (ALS) to develop a simple binary response in order to reply to ...

متن کامل

Subject-specific time-frequency selection for multi-class motor imagery-based BCIs using few Laplacian EEG channels

The essential task of a motor imagery brain–computer interface (BCI) is to extract the motor imageryrelated features from electroencephalogram (EEG) signals for classifying motor intentions. However, the optimal frequency band and time segment for extracting such features differ from subject to subject. In this work, we aim to improve the multi-class classification and to reduce the required EE...

متن کامل

Classification of Motor Imagery EEG Signals Based on Time-Frequency Analysis

We describe a new technique for the classification of motor imagery electroencephalogram (EEG) recordings. The technique is based on a time-frequency analysis of EEG signals, regarding the relations between the EEG data obtained from the C3/C4 electrodes, the features were reduced according the Fisher distance. This reduced feature set is finally fed to a linear discriminant for classification....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neural engineering

دوره 3 3  شماره 

صفحات  -

تاریخ انتشار 2006